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Abstract. Numerical methods for tackling the inviscid instability problem are discussed. Convergence is demon-
strated to be a necessary, but not a sufficient condition for accuracy. Inviscid flow physics set requirements
regarding grid-point distribution in order for physically accurate results to be obtained. These requirements are
relevant to the viscous problem also and are shown to be related to the resolution of the critical layers.

In this respect, high-resolution nonlinear calculations based on the inviscid initial-boundary-value problem are
presented for a model shear-layer flow, aiming at identification of the regions that require attention in the course
of high-Reynolds-number viscous calculations. The results bear a remarkable resemblance with those pertinent to
viscous flow, with a cascade of high-shear regions being shed towards the vortex-core centre as time progresses.
In parallel, numerical instability related to the finite-time singularity of the nonlinear equations solved globally
contaminates and eventually destroys the simulations, irrespective of resolution.
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1. Introduction, physical background and motivation

One of the aspects characterising laminar-turbulent flow transition is the generation of small-
scale structures as the flow progresses from laminar through transitional into a turbulent state.
As a matter of fact, the scales most difficult to be resolved accurately are those generated
during transition. In the context of numerical calculations of any of the transition stages this
translates into the requirement to employ numerical methods of highest accuracy and low-
est dissipation possible. Spectral or finite-difference type methods of high formal accuracy
are routinely used to calculate linear growth, nonlinear saturation in two-dimensions, and
breakdown stages in three-dimensional viscous wall-bounded and free-shear flows [1].

Inviscid linear theory, on the other hand, keeps forming an integral part of current re-
search into the mechanisms responsible for transition, especially relevant to compressible
(in particular supersonic) flows, where inviscid instabilities are often prevalent (Mack [2],
Duck [3]). The topic in its physical aspects is current research and too wide to be introduced
exhaustively. The interested reader may find elements of the early inviscid linear theory in
Lin [4], more recent successes are summarised by Mack [2] and new instability modes are
constantly being discovered (Macaraeg and Streett [6], Shaw and Duck [7]). In parallel, a
number of investigators are actively pursuing the nonlinear aspects of inviscid theory (Smith
and Burggraf [8], Kachanovet al. [9], Ryzhov [10]). In the latter context, analysis is based
on nonlinear systems of equations of, typically, the Benjamin-Ono class which are treated by
combined analytical and numerical methods. From a physical point of view the novel aspect
introduced by addressing the inviscid system of equations is, of course, the admittance in the
latter of discontinuous solutions.
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Two requirements emerge for the numerical calculations; on the one hand, the solutions
to be obtained should be as accurate as possible, given a maximum affordable discretisation,
on the other hand, the numerical method adopted should be able to treat discontinuities. The
second requirement may lead to the use of finite-difference-type methods which, owing to
their inherent dissipation, can either resolve potentially existing discontinuities or localise the
effect of their poor resolution. However, the amount of dissipation present in a finite-difference
method is inversely proportional to the formal accuracy of the method, suggesting the need
for finite-difference methods of high formal order. Even then, the low scales generated during
the late transitional stages, corresponding to the high wave numbers which are damped in a
finite-difference scheme, may be poorly represented. Spectral methods, on the other hand, are
known to be optimally suited for the problem of linear and nonlinear instability and transition,
where a reasonable resolution is to be devoted to extraction of as much physically relevant
information as possible. However, the global expansion character of spectral methods suggests
that the existence of a true discontinuity at some region in the flow will generate numerical
instability which will contaminate the flow field globally; it appears that the requirements of
optimal accuracy and resolution of true discontinuities are contradictory. A distinction should
be made here between true discontinuities, like a shock, and solitary-wave type of solutions,
such as those arising in the numerical solution to Burgers, Korteweg-de-Vries, or Benjamin-
Ono equations. In practice, it is the latter type of steep gradient which appears in the nonlinear
stages of transition simulations. A brief discussion of this issue of resolution of regions where
steep, yet finite gradients appear in the flow may be found in the Appendix.

There is a further issue involved in transition modelling which seems to have received
attention in its own right only in the context of compressible simulations [11], although
relevant in both incompressible and compressible flow. This is related to the distribution of
the limited number of points which one has available in the course of a simulation. Numerical
experience suggests that points be placed such that they resolve well the (known in advance)
regions of high gradients in the basic flow. In the fortuitous case that these regions coincide
with the critical layers predicted by linear theory the delivered nonlinear simulation results
can be reliable. Otherwise, solutions may be obtained which bear no resemblance to the
physical problem, even though purely numerical criteria suggest that they have converged.
Critical layers develop early in the process of transition, during the stage of linear growth
of perturbations. Inviscid linear analysis suggests that their neighbourhood is the flow region
requiring optimal resolution, since linear perturbations in that flow region typically possess
very steep (though finite) gradients. If credibility is to be given to the nonlinear equilibria
in two spatial dimensions (Koch, [12]) or transitional flow fields in three spatial dimensions
which follow linear growth, linear critical layers must be well resolved. If a low-order accurate
numerical method is used for the simulation, the error introduced by the inaccurate description
of the physics of the critical layer region may go unnoticed or be confused with other sources
of numerical error; the accuracy of the nonlinear equilibria resulting from such simulations
is questionable. This is the reason why we adhere to a fully spectral method, the accuracy
properties of which permit clear manifestation of the singularities developing.

The present paper is firstly concerned with the issue of the significance of critical-layer
resolution by reference to an analytically known example. The conclusions drawn in a linear
framework carry the same weight in nonlinear calculations. In the latter case, though, compar-
isons of analytical and numerical solutions may not be as straightforward as is the case with
classic inviscid linear-analysis results (Fjørtøft [13]). One has to rely on accurate numerical
solutions, which can provide useful insight for further nonlinear analysis.
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The main part of the present paper is a contribution in this direction. We perform direct
numerical simulations of the compressible Euler equations, motivated by an issue which
was raised during three-dimensional viscous and inviscid shear-layer transition simulations,
namely the appearance in the late transitional stages of well-defined clusters of vorticity
between the high-shear regions which outline the so-called braids. Since the two-dimensional
model also exhibits such structures, we decided to probe the nonlinear regime of compressible
model shear-layer inviscid instability, by numerical solution of the two-dimensional Euler
equations at high resolution. Numerical aspects alone of the results obtained are discussed
herein; the physical information is currently under evaluation. In this respect, no attempt will
be made presently to discuss the physical aspects of the results obtained within the frame
of finite-time singularities developing in the solution of the Euler equations [14]; such a
discussion will follow the physical evaluation of our results and will be presented in due
course.

The paper is structured as follows. The alternative forms of the governing equations solved
are presented in Section 2. After exposing the link between the full equations and the linear
problem solved in order to initialize the computations, we present in Section 3 the tools used
for the direct Euler simulations. Particular reference is made to the collocation approach which
is vastly inferior to the commonly used pseudospectral scheme on scalar machines, but turns
out to be more efficient than non-optimised fast Fourier transforms on the vector machine
used. The members of the Padé and Runge-Kutta families used, respectively, for evaluation
of spatial derivatives and time-integration are identified. Accuracy and efficiency aspects of
the nonlinear results obtained are treated in Section 4. After a brief discussion in a linear
framework of the issue of resolution of the critical layer in Section 5 we present the results
of the nonlinear simulations of inviscid instability in the compressible shear-layer flow. The
overall picture obtained is discussed in the closing section.

2. Governing equations

2.1. DIRECT NUMERICAL SIMULATIONS OF THE COMPRESSIBLEEULER EQUATIONS

The compressible two-dimensional Euler equations may be used to describe inviscid flow
disturbances of arbitrary magnitude. Time- and space-accurate numerical solutions of these
equations, termed Direct Euler Simulations (DES), have been obtained. We have used both
the conservative unsplit form of the equations (i.e. one in which flow quantities are not
decomposed into basic and disturbance terms)

∂
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whereE = 1
γ−1p + 1

2ρ(u2 + v2) andγM2p = ρT , as well as the non-conservative unsplit
form of system (1). HereM is the Mach-number andγ the ratio of specific heats. Instability
results obtained using the two forms were identical. Further, considering the decomposition
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into basicq = (ρ, u, 0, p)T and disturbancêq = (ρ̂, û, v̂, p̂)T flow quantities and substituting
q = q+ q̂ in the system (1), we solved the following system of disturbance equations
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∂û

∂x
+ û
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∂p̂

∂x
+ v̂

∂p̂

∂y
+ 1

M2

∂û
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2.2. INVISCID LINEAR INSTABILITY OF PLANAR COMPRESSIBLE SHEAR FLOWS

If we take q̂ = Aq̃ with A a constant amplitude parameter of small magnitude, then lin-
earisation of the system (2–5) is permissible; theO(A) disturbance equations which result
read
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ṽ

]
, (7)

∂ṽ
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At this point we may introduce an eigenmodeansatzon time into the system (6–9) and
solve the resulting two-dimensional inviscid eigenvalue problem (cf.Hall and Horseman [17]);
such an approach is beyond the scope of the present investigation. Instead, the standard linear
stability ansatzof streamwise periodicity of the flow considered is made, and all flow quanti-
ties are decomposed into their Fourier components in that direction; if we take a periodicity
lengthLx, a (real) streamwise wavenumber is defined asα = 2π/Lx. The normal direction
y, on the other hand, is taken to be unbounded and resolved. The disturbance quantitiesq̃
then take the form̃q = q̌(y)ei(αx−�t) + c.c. with � = αc and q̌ being complex quantities
andc.c. denoting complex conjugation in order for the physical space quantitiesq̃ to remain
real. Numerical solution of the inviscid compressible linear eigenvalue problem which results
from substitution of the aboveansatzin (6–9) delivers the eigenvalue� and eigenvectořq
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pertinent to a given set of parameters(α,M). If F{�} > 0, exponential growth of̌q (within
the linear framework) will result. Such linearly unstable waves have been selected as initial
conditions for the nonlinear calculations based on (1) or (2–5). The point(s) in the flow where
the phase velocity of the unstable disturbances equals that of the basic flow play a central role
in the analysis of inviscid instability results [4]; as such, their neighbourhood places additional
demands on resolution.

3. Numerical algorithms

Both time and space have to be resolved for the nonlinear calculations based on either (1)
or (2–5). The numerical methods used comprise standard technology of compressible direct
numerical simulations. Accuracy and efficiency, in that order, are the main considerations
in the long-time integrations of the equations which have to be performed. The numerical
methods utilised follow from these two requirements, as well as the assumptions made on the
flow problem considered.

The periodicity assumed in the streamwise direction leads to a Fourier expansion in this
coordinate. Implicit in this decision is the inability to resolve discontinuities, such as shocks
potentially present in the simulations as the Mach number increases (Vremanet al. [18]). No
evidence of shocks exists, however, for this flow problem at the low Mach number at which
the calculations were performed. In the normal direction an unbounded domain has to be
treated and this offers some flexibility. Both finite-difference and spectral methods may, in
principle, be used. The heavy work load associated with the dense matrices resulting from a
spectral discretisation and the time-step limitation associated with the CFL condition in ex-
plicit time-integrations and, not least, hardware considerations led investigators in the late 80’s
to exploit finite-difference type of methods for transition simulations. We discuss comparisons
between Chebyshev collocation, Chebyshev pseudospectral and Padé 3/4/6 (Lele [19], Adams
[20]) discretisation with respect to accuracy and efficiency. In contrast to the aforementioned
simulations, the results obtained on the vector machine led us to adhere to a fully spectral
scheme.

As to the spectral discretization, essential references for spectral methods are Canutoet al.
[31] and Boyd [33]. A step-by-step discussion of the relationship between the classic spectral
space expansions and spectral collocation may be found in Ku and Hatziavramidis [21]. Grids
and the pertinent collocation derivative matrices must be defined at the beginning of the cal-
culations. We obtained results using two mappings between the Gauss-Lobatto pointsx and
the mapped coordinateη ∈ (−∞,∞), one algebraic and one exponential. For eigenproblem
calculations we employ spectral collocation in physical space, rather than the more traditional
(and numerically equivalent) transform-space approach. For exploratory runs at low resolution
(< 1282) in the DES, collocation in physical space is also the method of choice; for high
resolution runs on scalar machines transform methods are indispensable.

Efficiency is central to the success of long-time integrations and any candidate to match the
accuracy properties of a spectral expansion must be considered. We have chosen to compare
Chebyshev collocation against a Padé scheme which is 6th-order accurate in the interior of
the domain, while a third- and fourth-order accurate closure is used in the boundary and
immediately next to the boundary points. This scheme was proposed by Lele [19] and has
been used by Sandham and Reynolds [22] in viscous compressible calculations of shear-layer
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flow transition and Adams [20] in transition simulation of compressible boundary-layer flow.
Calculation of spatial derivatives is performed here by inversion of the matrix equation

Lf ′ = 1

δ
Rf (10)

for the first derivativef ′ of a functionf defined on a domain which has been partitioned
equidistantly with spacingδ. Lele [19] gives a full discussion regarding prescriptions for
higher derivatives, necessary in the course of viscous simulations. Numerically this scheme is
attractive on two counts. First, the bandedness of the matricesL andR suggests that efficient
linear-algebra methods may be used for the inversion of (10). Much more significantly, though,
both dispersive and dissipative (the latter associated with the boundary treatment) errors of
Padé schemes, are significantly lower than those of classic second- and fourth-order accurate
finite-difference schemes [19], although higher than those of a spectral method. The scheme
in discussion, thus, comes much closer to the resolving properties of spectral spectral methods
than the classic finite-difference schemes. Given the quantum leaps in hardware technology
over the decade that elapsed since the Padé schemes were proposed, it is of interest to examine
whether a straightforward spectral discretisation is competitive in terms of efficiency; we
address this issue in the following section.

Out of the plethora of alternatives discussed in the literature we have chosen one of the
third-order explicit Runge-Kutta schemes proposed by Wray [23]

k1 = 1t F(Un, tn)

k2 = 1t F(Un + 2
3k1, tn + 2

3δt)

k3 = 1t F(Un + 1
4k1 + 5

12k2, tn + 2
3δt)

Un+1 = Un + 1
4k1+ 3

20k2+ 3
5k3, (11)

with index n indicating time-level,1t being the time-step,U the solution vector andF the
RHS vectors in (1) or (2–5). The attractive feature of the particular RK3 scheme is that it
provides third-order accuracy in time, while it requires only two levels of storage. As such
the RK3 represents a compromise between the more accurate but more expensive classic RK4
and the less accurate and equally expensive second-order accurate RK2 scheme.

4. Numerical aspects of the results

4.1. EFFICIENCY

By far the most time-consuming element in direct numerical simulations is the calculation of
the spatial derivatives in the right-hand sides of (1) or (2–5). Efficiency is of importance and it
turns out that the optimal approach depends not only on the algorithm, but also on the machine
architecture used. Table 1 shows the timing of the alternative approaches utilised presently.

These results deserve discussion with reference to the machine used. Albeit reasonably fast,
the scalar machine is a typical example of the textbook application of transform algorithms,
with the methods based on the FFTs resulting in dramatic savings compared with matrix multi-
plication for all but runs at exploratory resolution. When comparing timings between the fully
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Table 1. Times per time-step in seconds for the different approaches used for the calculation of spatial
derivatives. In brackets the Mflops performed by the code on the vector machine.

SUN Ultra 1 NEC SX-4

Resolution Collocation Pseudospectral Padé Collocation Pseudospectral Padé

32× 32 0·809 0·313 0·257 0·005 (163) 0·075 (21) 0·040 (21)

64× 64 6·029 1·242 1·010 0·025 (417) 0·185 (36) 0·111 (35)

128× 128 46·430 5·153 4·343 0·135 (720) 0·565 (55) 0·350 (51)

256× 256 433·571 21·445 18·074 0·770 (1046) 1·725 (79) 1·130 (69)

512× 512 4382·610 86·645 73·084 4·175 (1545) 5·205 (103) 4·045 (90)

spectral and the mixed spectral/finite-difference methods, on the other hand, we see that the
latter is marginally more efficient than the former at the same resolution. Given the common
use of a pseudospectral Fourier expansion inx in both algorithms, the most probable explana-
tion for this somewhat surprising result is the optimisation of the fast-Fourier transform library
on the scalar machine. It is, however, erroneous to conclude from the results of Table 1 that
the fully spectral scheme should be dropped in favour of the mixed spectral/finite-difference
algorithm on grounds of efficiency. Regarding accuracy, we will demonstrate shortly, by ref-
erence to the linear stability growth rate reproduction by the nonlinear code, that the number
of finite-difference points necessary to match the accuracy of the spectral expansion iny is
larger by an amount which has the potential to offset the benefit of the efficiency demonstrated
here.

The results on the vector machine should serve as a warning against uncritical use of li-
brary software on a high-performance computer. While an increase of the workload associated
with matrix multiplication in the collocation algorithm results in a better performance of the
code, the latter reaching an acceptable 1·5 Gflops without optimisation, the one-dimensional
FFT libraries utilised for the pseudospectral calculations and the relatively short vector-length
tridiagonal matrix inversions in the Padé algorithm result in very poor performance. As a con-
sequence, the direct algorithm based on collocation, which is inefficient on scalar machines,
becomes very competitive on the supercomputer.

4.2. ACCURACY

As an initial condition for the nonlinear computations we impose the unstable wave delivered
by linear theory at the Mach- and wave number parameters chosen for the nonlinear computa-
tions. The usual quality test, namely reproduction of the linear growth rate by the simulation
code, is performed here under somewhat different conditions than those of a viscous temporal
simulation. Specifically, in the present inviscid calculations there is no possibility to use a
forcing term, as done in viscous simulations, in order to maintain the imposed basic flow
profile a solution of the nonlinear system of equations; this would only be possible by includ-
ing a vertical velocity component, which would imply a spatial simulation. Consequently, the
growth rate obtained in the simulations decreases monotonically with time and comparisons
with the linear growth rate are only possible at very early times in the simulation, provided
that the amplitude at which the linear wave is superimposed is taken to be small and the time-
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Table 2. Comparisons of linear growth rates obtained by
the Chebyshev pseudospectral and the Padé finite-difference
differentiation algorithms iny; in both cases a Fourier ex-
pansion has been used inx. Also cited is the linear stability
theory (LST) result, obtained by Chebyshev collocation.
Parameters used:M = 0·4, α = 0·409.

LST DES

Ny �i �i (Spectral) �i (Pad́e)

32 0·155332 0·156028 0·408829

64 0·155301 0·155277 0·147440

128 0·155301 0·155302 0·155195

256 0·155301 0·155301 0·155298

512 0·155301 0·155301 0·155302

step much lower than the CFL-delivered time-step. This has been done for both schemes used
to calculate spatial derivatives iny and the results may be found in Table 2.

We find both schemes capable of reproducing the linear-theory result, albeit that for results
of the same level of accuracy Padé differentiation is inferior to a Chebyshev expansion for
two reasons. First, at low resolution the spectral scheme delivers reasonable approximations
of the physical result, while the finite-difference calculation has an order-of-magnitude error.
Second, the number of points necessary for the finite-difference result to match in quality
that of the spectral discretisation can be substantial. In view of this result, we refrained from
the approach taken in earlier simulations [24], where we interchanged the two differentiation
algorithms in calculating they-derivatives in (1), always remaining within modest resolutions
[24]. For the current nonlinear computations we solved (2–5), adhering to the fully spectral
scheme.

5. Linear and nonlinear instability results

The issue which gave rise to the present nonlinear stability results is whether the structures
that form between the high-shear regions during the late stages of compressible shear-layer
transition are of physical origin. Such structures can be clearly seen in the results of Sandham
and Reynolds [22] (cf. in Figures 3.5b, 4.4b, 4.10c, 4.11c), while we encountered them also in
the course of validation runs for direct simulations of compressible attachment-line instability
[24]. The structures were, surprisingly, present also in inviscid calculations, irrespective of
whether a two- or three-dimensional computation was performed, as can also be seen in Figure
2(a) in [24]. Although certainly not pointwise oscillations, their association with the tails of
the vorticity contours gave rise to the suspicion that they might be due to numerical insta-
bility; however, if physical, their appearance already in the two-dimensional inviscid model,
in conjunction with the regular pattern that they form, could have profound implications for
theoretical models of the late stages of transition in viscous shear flows.
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However, before entering the discussing of the nonlinear stability results obtained, we
briefly take a detour and expose the issue of resolution of the critical layer, in a linear frame-
work and for a problem for which analytical results to compare against are well established.

5.1. ON THE RESOLUTION OF LINEAR CRITICAL LAYERS

The incompressible viscous linear stability of the asymptotic suction boundary-layer profile,
whose basic flow is given by

u(y) = 1− e−y,

is governed by the system derived and solved by Hocking [27]. As is the case with the
generalised Hiemenz boundary layer [28, 29], the basic flow is an exact solution of the
full Navier-Stokes equations of motion. Consequently, an inviscid stability analysis of this
profile should not be expected to deliver physically interesting information at finite Reynolds
numbers. However, Hughes and Reid [30] found an analytic solution of the Rayleigh equation
pertinent to this profile. This may serve as an illustration of the difference between numerically
converged and physically relevant solutions. Demanding decay at infinity and denoting the
normal perturbation velocity eigenvector by8 and the position of the critical layer byycr, we
have the solution

8(y) = F(p, q; r; t)
F (p, q; r;1)

e−α(y−ycr) (12)

for |t| = |e−(y−ycr)| 6 1, where

p = α +√(1+ a2); q = α −√(1+ a2); r = 1+ 2α

andF(p, q; r; t) is the standard hypergeometric function. Hughes and Reid [30] also provided
the asymptotic limit of Equation (12) asy →∞; this is

8(y) ∼ − 1

(1− c)a

0(α +√1+ α2)0(α −√1+ α2)

0(1+ 2α)
e−αy (13)

with 8 normalised such that it is unity at the critical layer. We solved for the inviscid incom-
pressible stability problem of the asymptotic boundary layer, using Chebyshev collocation and
N = 64 points. In order to compare to the analytic solution (13) for a given wave frequency
cr we first locate the critical layer analytically by

ycr = − log(1− cr).

While advance knowledge ofycr could ensure that this point belongs to the spectral grid on
which solution of the governing Rayleigh equation is sought, it is impossible (and undesirable
from the point of view of the predictive capacity of the numerical approach) to impose this
condition at all points where the Rayleigh equation is to be solved numericallyfor all cr . The
next step, therefore, is to use a highly accurate interpolation procedure, presently piecewise
cubic Hermite, in order to calculate the quantity8(ycr) ≡ 8cr from our numerically obtained
results. Scaling the numerical solution so that8cr = 1, we compare a number of eigenvectors
resulting from a single calculation against Equation (13). Such a comparison for far-field
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Table 3. Comparison of numerically obtained against analytic solution of the Rayleigh equation for the
asymptotic suction boundary-layer profile atα = 0·163 for calculations at three different grids. Solution
corresponding tocr = 0·1081 resolves the critical layer best.

cr = 0·1081 cr = 0·0940 cr = 0·1033

y Numerical Analytic y Numerical Analytic y Numerical Analytic

3·60 4·1946 4·2943 3·91 4·0109 4·0743 7·94 2·1171 2·1163

4·71 3·5540 3·5815 5·15 3·3132 3·3253 9·70 1·5879 1·5869

6·30 2·7620 2·7665 6·89 2·5062 2·5053 11·85 1·1197 1·1189

8·58 1·9066 1·9071 9·32 1·6876 1·6858 14·36 0·7436 0·7431

11·83 1·1230 1·1231 12·64 0·9827 0·9815 17·11 0·4751 0·4748

16·10 0·5600 0·5601 16·77 0·5016 0·5010 19·75 0·3086 0·3084

20·47 0·2744 0·2744 20·74 0·2624 0·2621 21·75 0·2230 0·2228

22·50 0·1972 0·1972 22·50 0·1970 0·1968 22·50 0·1973 0·1971

values of both the analytic solution and a number of the numerically obtained members of
the spectrum is presented in Table 3. The point made regarding numerical convergence and
accuracy now becomes clear, by reference to the different degree of discrepancy between the
analytical and the numerical solutions obtained for the different eigenvectors.

While the numerical solution pertinent to all eigenvectors has converged, the results exhibit
different degrees of accuracy compared with the (known for this problem) analytical results.
The discrepancies were found to stem from the fact that the numerical solutions were obtained
on a single grid, the point distribution of which refines the critical layers pertinent to individual
eigenvectors to different degrees, a fact which immediately reflects on the accuracy with which
the eigenvector is captured.

5.2. NONLINEAR INVISCID INSTABILITY OF THE COMPRESSIBLE MODEL SHEAR LAYER

The possibilities of analysis for nonlinear inviscid instability are much more limited as com-
pared to those for the linear problem. Accurate inviscid nonlinear computations are needed
in order to aid efforts for both analysis and numerical computations of the viscous problem.
In both cases, high-resolution inviscid numerical solutions may identify the critical structures
present in the flow field which will require attention in the course of a viscous simulation,
while possibly being amenable to analysis. Further, with the issue of the existence of finite-
time singularities in the numerical solutions of the inviscid nonlinear stability problem being
a subject of current research [15, 16], nonlinear inviscid solutions are of interest in their
own right. We turn to the presentation of numerical results obtained by application of the
algorithms for the direct simulations on the system (2–5). We used the fully spectral algorithm
at increasingly high resolutions; for ease of presentation we have first grouped results at four
different resolutions, 322, 642, 1282 and 2562. Given the accuracy properties of the spectral
expansions, simulations at typically an order-of-magnitude more points would be needed if
the differentiation algorithm were to be based on second-, or fourth-order accurate finite dif-
ferences. Incidentally, we mention that viscous simulations at modest Reynolds numbers and
the relatively low Mach number value used herein,M = 0·4, place much lower computational
demands. Sandham and Reynolds [22], using a mixed Fourier-Padé algorithm and the then
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available computing resources, needed a grid of 64× 81 points for their viscous simulations
at Reynolds number Re= 400. Given the physical background of shear-layer instability and
the mathematical nature of the inviscid equations solved, we expect from the outset that any
resolution used for the solution of (1) will in the long run become inadequate. Nevertheless,
we performed the present simulations with the intention of probing into ever later stages of
the nonlinear instability process as the resolution increases. We expect to be able to extract
information on which models relevant to the viscous problem may be built.

Of all possible quantities that may be presented we focus on the vorticity; contours at four
times, t = 5(5)20, may be found in Figure 1. All resolutions may be considered adequate
during the early weakly nonlinear stages, confined to a timet 6 5; att = 5 the low resolution
results appear to be marginally deviating from the rest, indicating that they will be of little
use for extraction of information as time progresses. Att = 10 all but the 2562 results are
seen to suffer from a numerical instability originating at the saddle point of this vorticity
system. In the 1282 and more clearly in the 2562 simulation results it is seen that in the
neighbourhood of the saddle point a steep gradient is formed. In a manner analogous to the
Burgers equation result presented in the Appendix, poor resolution of this region will result
in numerical instability appearing in the full flow field at later times. This is precisely what
happens with the three low-resolution simulations att > 15. Related is the issue of the build-
up of steep gradients in the flow. During the weakly nonlinear stages the shape of the vorticity
contours is reminiscent of that found in viscous calculations, since the instability we discuss is
essentially of an inviscid nature. As time progresses, however, the steepening of the vorticity
contours continues unimpeded, given the absence of physical (or numerical) viscosity.

At t = 15 a number of observations are worthy of discussion. First, the saddle-point
region has the hallmarks of a singular region developing in the simulations. This is unlike
the corresponding viscous results (and the Burgers equation) where the introduction of even
a small amount of viscosity alters the mathematical nature of the system of equations and
prevents a singular region from developing. Second, the steep-gradient region marking the
outline of the vortex core is substantially less diffuse than its viscous counterpart. This fact
alone can account for additional numerical difficulties. Third, one may notice that within the
vortex core, a secondary vorticity cluster is being formed, with the tendency to detach itself
from the braids. This secondary vorticity pattern can be inferred already from thet = 10
results and is clearly seen in the 2562 results att = 20, when a replicated copy of the original
vorticity pattern is encompassed by the braids. At the same time, the 2562 calculation is seen
to suffer from generation of numerical instability at the saddle point region. Consequently, we
may only draw qualitative conclusions from the high-resolution results att = 20, when using
up to 2562 points.

We return to the question which gave rise to the nonlinear results of the present paper.
Already at t = 15 it is easy to identify in both the 642 and the 1282 simulation results
clusters of vorticity trapped in between the steep-shear gradients, analogous to those which
gave rise to the question posed at the outset of the present investigation [24]. Incidentally we
mention that the simulations in [24] were performed at analogous resolutions, albeit based
on (1). Although they are certainly not pointwise oscillations, these vorticity clusters become
narrower as resolution increases and (almost) vanish in the result of the 2562 calculation.
The conclusion to which we are led is that, at least within the context of the present inviscid
simulations, these vorticity regions are not the result of some physical, but rather a numerical
instability.
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Figure 1.
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Figure 2.

At t = 20 the situation, as far as the saddle point and the outline of the vortex core
is concerned, remains unaltered. The secondary structure known from viscous simulations
and its symmetric structure (with respect to the vortex-core centre) are seen to develop. The
structure aty > 0 might be thought of as being related to the tail of the vortex-core perimeter
at y < 0 and vice versa, as seen in Figure 2, where the narrowness of the peak vorticity
regions may be appreciated. Topological analysis of the flowfield [32] reveals further critical
points, besides the saddle point (SP) and the vortex core (VC). These are identified with
reference to their location from left to right on the centreline as points P1 and P2, the first
lying at a small distance to the right ofπ/α, between the tip of the lower braid and that of
the secondary vorticity cluster formed in the upper half of the domain. Point P2, on the other
hand, is located by the same amount to the left of 2π/α and may be defined accordingly as
the location between the the forward tip of the upper braid and that of the secondary vorticity
in the lower half of the domain.

As far as the region in the neighbourhood of the saddle point is concerned, we observe that
no appreciable difference in the level of pressure exists, indicating that no shock formation
should be expected there. By contrast, the difference in the level of vorticity at either side
of either P1 or P2 is appreciable. This suggests that at P1 and P2 shocks may develop as
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the Mach number increases; this would require additional attention to be paid in adequately
resolving the neighbourhood of these points if the simulation is to progress to higher Mach
numbers and the equations are to be integrated for longer times. Inside the vortex core, on the
other hand, one may identify points which subdivide the vortex core in three regions, their role
being analogous to that of P1 and P2 at earlier times; extrapolating from the present results,
we expect the formation of tertiary structures within the vortex core. For such a claim to be
substantiated, however, simulations at even higher resolutions are necessary.

Such simulations have been performed for 5122 spectral collocation points. The results,
again in the form of vorticity contours, are presented at timest = 10(5)35 in Figure 3. Of
interest in the results of these numerically nontrivial simulations are a number of findings.
First, the suggestion that was put forward by reference to the lower resolution 2562 simulations
regarding shock formation is erroneous. The uneven pressure distribution at either side of
points P1 and P4 att = 20 is absent at later times. Instead, these points are simply found
to subdivide what initially used to be the vortex core into smaller regions inside which the
original pattern of vorticity has replicated itself. Although, eventually, numerical instability
will destroy these simulations also (as it would destroy simulations at any higher resolution),
the qualitative picture obtained is the following.

At time t 6 10 a secondary cluster of vorticity is being formed and detaches from the
braids. The latter, unimpeded by the absence of viscosity, steepen significantly more than their
respective viscous counterparts, as seen in thet = 15 results. The secondary vorticity gener-
ated initially in the neighbourhood of the tip of the lower braid, extends over an appreciable
portion of the vortex core byt = 20. At that time, the flow may be seen as being composed of
the steep gradient region outlining the core of the vortex and the core itself which contains a
pattern of vorticity qualitatively analogous to that imposed originally. Att > 20 a repetition of
the process discussed up tot = 20 takes place within the vortex-core region. On the one hand,
the original braids continue steepening, while inside the vortex core a secondary high-shear
region develops, at the same time shedding a tertiary cluster of vorticity of smaller scale. The
secondary high-shear region steepens as time progresses; the tertiary vortex system sheds a
smaller-scale copy of itself further inwards towards the vortex core and this cascade continues,
for as long as qualitatively results may be extracted from the present simulations. Four regions
of high shear can be identified from the numerical instability in the 5122 simulation results of
Figure 3 att = 35. Shortly after this time this numerical instability, resulting for the reasons
discussed, leads to numerical breakdown of the simulation.

Based on the results obtained we conjecture that, in the course of a high-Reynolds-number
viscous simulation, the succession of high-shear regions generated within the vortex core as
time progresses is one of the critical flow locations which places high resolution demands.
The nontrivial shape of the steep gradients, though, may result in the distribution of points
devoted to capturing the phenomenon being nonstandard. Adaptive grid generation, within
the frame of spectral-element computations appears to be one of the ways forward to address
this numerically challenging problem.

6. Discussion

The maturing of numerical algorithms and computing hardware to support direct numerical
simulations results in a tendency to rely on numerical solutions alone in order to describe the
complex phenomena associated with transition of fluid flow from a laminar to a turbulent state.
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Figure 3.
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This approach is fully acceptable when used critically and has, indeed, resulted in spectacular
successes. The danger of relying exclusively on the numerics, however, is inherent in the
nature of the system of equations solved. Nonlinearity has the potential of delivering unphys-
ical solutions, even in the presence of convergence, simply on account of the use of a single
grid which cannot describe all instability modes present in the flow with the same degree of
accuracy. If the inaccurately described modes become physically relevant, for instance through
some receptivity mechanism [34], numerically correct but physically irrelevant solutions may
be obtained.

We have briefly discussed the inviscid linear problem and presented the asymptotic suction
boundary-layer model flow, in which converged numerical solutions of the inviscid linear-
stability eigenvalue problem may be derived which exhibit different degrees of relevance to
the physics of the instability problem. For accurate (linear) stability results, resolution of the
critical layer is shown to be the condition to be satisfied, additionally to that of basic flow
gradient resolution. Unlike the case of the shear layer, where the condition of coincidence of
linear critical layer and location of maximum basic flow derivatives is fortuitously satisfied,
this result serves to illustrate the fact that a single grid cannot represent all instability modes
present in the flow to the same degree of accuracy, if critical layers exist in regions other
than that of maximum basic flow derivatives. Such regions can be generated in the course
of nonlinear time-dependent simulations. The implications for modest-resolution nonlinear
computations based on low-order numerical methods are obvious.

Next, we turned our attention to the nonlinear inviscid instability of the compressible
two-dimensional model shear-layer flow. We addressed the issue of efficiency, which is para-
mount to the success of high-resolution simulations for which long-time integration has to
be performed. The optimum approach turns out to be dependent on the machine used and
the quality of optimisation of the software used for the residual calculations. High-resolution
spectrally accurate nonlinear instability results have been obtained, motivated by a question
which arose in the course of both viscous and inviscid direct simulations of this classic flow.
The localised regular pattern of vorticity concentrations seen in the early simulations is, at
least in the inviscid framework considered, found to be numerical in origin, related to the
saddle-point atx = π/2α. The development of steep gradients in the flow is documented.
The nonlinear instability of the inviscid model is found to comprise all the characteristics
known from viscous simulations, albeit that the flow gradients are much steeper and can lead,
in this inviscid problem, to numerical difficulties not experienced in direct simulations in the
presence of viscosity. On the other hand, precisely because of this reason, it is much easier to
identify the flow regions which become critical in the course of the simulations and will need
particular attention in order for either viscous or inviscid simulations to proceed in time, while
delivering physically meaningful results. The present inviscid nonlinear stability calculations
are a step in this direction and demonstrate that the model problem discussed will continue to
be both a theoretical and a numerical challenge in the foreseeable future. In the meantime, the
present results serve to underline what is, hopefully, obvious to the community of numerical
modellers, namely that computation should be accompanied and, whenever possible, preceded
by analysis.
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Table 4. Convergence history of the slope
∂u/∂x(x = 0) in the numerical solution of
Burgers’s equation (14).

Nx 1t t0 ∂u/∂x(x = 0)

32 5·0(−4) 0·51250 151·4240

64 5·0(−4) 0·51050 152·0031

128 2·5(−4) 0·51050 152·0046

256 7·5(−5) 0·51075 152·0049

Figure 4.

Appendix. Spectral methods and finite gradients

The issue of resolution of sharp gradients by a spectral method is introduced clearly by
reference to numerical solutions of the one-dimensional Burgers equation,

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0 (A1)

in x ∈ [−1, 1]. We solve (A1) subject to the initial conditionu(x, t = 0) = − sin(πx)

and the boundary conditionsu(x = −1, t) = u(x = 1, t) = 0, using Fourier collocation
and the mixed implicit/explicit scheme due to Spalartet al. [25] for the time-stepping of the
viscous and nonlinear term, respectively. The viscosity parameter in this example was chosen
ν = 0 ·01/π at which this model equation develops a steep gradient at timet0 ≈ 0 ·5.
The performance of the collocation scheme used for the direct simulations is tested against
the analytically known result for the maximum value of the slope of∂u/∂x(x = 0) =
152·0052 [26]. Table 4 presents grid-sequencing results of single-domain Fourier collocation;
the number of Fourier collocation pointsNx is shown; the time step is1t and the time at
which the maximum slope occurs ist0. No cosmetic postprocessing of the results has been
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performed and values at the cited times are presented without any attempt to obtain the
maximum value of the derivative through some interpolation procedure.

What is of significance here is that, although the convergence towards the analytic value is
evident, in order for results of such quality to be obtained the neighbourhood ofx = 0 must be
well resolved; the fact that this region becomes interesting in the course of the simulation is,
of course, knowna-priori in this simple flow model. An inadequate resolution of the region
where the gradient develops, in conjunction with the global nature of the spectral method
for the calculation of spatial derivatives, results in the whole flow field being contaminated by
numerical instability. This is clearly demonstrated in Figure 4 where both the well resolved re-
sults, as well as those obtained by naive use of the equidistantly distributed Fourier collocation
points are presented.

Unlike a low-order accurate finite-difference calculation, in which the localised pointwise
oscillations might be considered acceptable, the global contamination of the flowfield obtained
from a spectral method leaves little room for misinterpretation of inaccurate numerical results
as potentially physical. Such situations of localised in space steep flow gradients are common
during the late transitional stages of either wall-bounded or free-shear flows. Aside from
guidance received from linear and nonlinear inviscid analysis (cf. [3, 4, 9], and [10]), high-
resolution inviscid nonlinear results, such as those obtained herein, are necessary to highlight
the physical mechanisms involved prior to a (substantially more expensive) three-dimensional
simulation of the viscous problem.
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